Наука бьётся над лекарством от вируса СПИДа вот уже тридцать лет, причём исследования начались ещё до того, как ВИЧ, что называется, «показал зубы». И хотя «триумфальное шествие» жуткого недуга по Земле, как принято считать, замедлилось с 2000 года, в мире живёт около 33 млн инфицированных. Даже если бы бόльшая часть больных СПИДом была из «благополучных» стран, чего, разумеется, нет, фармацевтическая промышленность всё равно не смогла бы обеспечить всех и каждого антивирусными препаратами, поэтому проблема вакцинации от ВИЧ продолжает быть весьма актуальной.
Почему работы по созданию вакцины не приносят успеха? Считается, что всё дело в исключительной изменчивости вируса. Обычно вакцина представляет собой препарат убитого (или сильно ослабленного) возбудителя заболевания, на котором иммунная система «отрабатывает удар». Вакцины против ВИЧ включали в себя вирусные белки, которые предлагалось запомнить иммунитету; при появлении настоящего вируса в организме иммунная система должна «вспомнить урок» и запустить в кровь антитела, атакующие вирус, а так называемые Т-лимфоциты памяти призваны распознавать вирусные белки, появляющиеся на поверхности заражённых клеток, и уничтожать эти клетки.
Но, как оказалось, ВИЧ стремительно мутирует без вреда для себя, а значит — легко уходит из-под удара иммунной системы, поскольку его белки в процессе мутаций изменяются так, что иммунная система их уже не узнаёт. Иначе говоря, в случае с ВИЧ иммунологи столкнулись с проблемой выбора мишени, в которую можно было бы «выстрелить» вакциной.
В последнее время учёные занялись поиском таких аминокислот в вирусных белках, которые в принципе не могут быть промутированы, заменены на другие, — и это сделало бы вирус нежизнеспособным. Однако такой подход не оправдал себя, поскольку критическая мутация в одном месте могла быть скомпенсирована изменением в другом, и вирус ничуть не терял в своей способности заражать организм. Тогда группа исследователей из Массачусетской больницы, Массачусетского технологического института и Гарвардского университета попробовала поискать не единичные критические аминокислоты в вирусных белках, а группы таких аминокислот, ведь изменения, касающиеся одной из них, обязательно вызывали бы мутации в других.
После обнаружения таких групп необходимо было оценить, насколько мутации в аминокислотных кластерах могут быть опасны для вируса. Если они приводят к появлению нежизнеспособной вирусной частицы — значит, белок, в котором находится эта группа аминокислот, необычайно важен для вируса. То есть вирус поостережётся вносить в него какие-то изменения — в том смысле, что, при высокой изменчивости в других белках, этот всегда будет нетронутым. Иначе говоря, вот она, идеальная мишень для вакцины.
Отдельного упоминания заслуживает тот факт, что для поиска таких аминокислотных кластеров использовалась теория случайных матриц — математический метод, широко распространённый в квантовой физике. Этот подход получил большую известность, когда с его помощью были проанализированы взаимозависимость изменений в капитализации газонефтяных и финансовых компаний на мировом рынке). Именно так исследователям удалось определить, что белок под названием Gag является тем самым наиболее константным составляющим вирусной частицы. В этом белке обнаружились несколько групп аминокислот, изменения в которых наносят наибольший вред вирусу, и среди этих групп была отобрана самая консервативная.
Оказалось, что аминокислоты этой группы отвечают за контакты между белковыми молекулами, защищающими генетический материал ВИЧ: изменения в этом районе приводили бы к тому, что вирусная частица просто не могла бы собраться.
Теоретические выкладки были подкреплены клиническими данными: пациенты, способные сопротивляться вирусу даже без помощи медикаментов, обладали большим количеством Т-лимфоцитов, атакующих именно этот «судьбоносный» аминокислотный кластер в вирусном белке. Уйти из-под атаки вирус не мог, так как мутации в этой зоне белка стали бы для него равносильны самоубийству.
В дальнейшем исследователи хотят найти у вируса СПИДа ещё несколько таких же слабых мест — и тогда станет возможна разработка вакцины, действительно не оставляющей недугу никаких шансов.
Результаты описанной работы опубликованы в журнале PNAS.
Подготовлено по материалам MIT News.
Источник: empit.ru