Она зависит от результатов однородной сети, состоящей из белков, которая единожды подверглась напряжению, генерируемому молекулярными двигателями, упакованными в очень сжатые волокна.
Техника сжатия внутри клетки, пожалуй, наиболее яркий пример способности клеток к самоорганизации клеточных белков в высоко упорядоченных функциональных структурах, участвующих в делении и миграции клеток.
Авторы пытаются выяснить, как такие высоко самоорганизующиеся структуры выходят из менее упорядоченной и однородной совокупности белков. А именно, из таких, как белок актин — один из основных белков в клетках, состоящий из биополимеров и связанных с ними молекулярными двигателями.
Шаллер и его коллеги восстановили минимальную системную модель цитоскелета, состоящего из нитей актина, скрепляемых вместе белками и молекулярными двигателями. Они обнаружили, что эта достаточно минимальная система воспроизводит подобную самоорганизацию процессов, наблюдаемую в природе.
В частности, они показали, что однородная сеть актиновых нитей, удерживаемых вместе связываемыми белками α-актинина, может быть быстро реорганизована двигательными белками. Эти связи представляют собой весьма гетерогенное множество компактных волокон, состоящих из миллионов отдельных волокон, напоминающих структуру «строительных лесов» внутри клеточного скелета.
Кроме того, авторы открыли, что эффективность этого процесса реорганизации и масштаб длины созданных волокон, напрямую зависит от двигательной активности. Таким образом, волокна могут составлять от 5 мкм до 100 мкм в длину для низкой и высокой двигательной активности, соответственно.
Источник: lightnews.net