Для этого исследователи помещали слой никеля толщиной 300 нм на жесткую кремниевую пластинку. Затем, используя стандартные фабричные технологии, на никель помещали тонкопленочные фотоэлементы. Их покрывали защитной пленкой и наклеивали сверху термоскотч.
Получившийся “бутерброд” погружали в воду комнатной температуры. Один край термоскотча частично отклеивали, позволяя воде проникнуть между слоем никеля и кремниевой подложкой. Через некоторое время никель полностью отделялся и исследователи могли снять термоскотч с приклеенными к нему фотоэлементами с кремниевой пластинки.
После этого фотоэлементы помещали на окончательную поверхность и нагревали до 90 градусов Цельсия. Скотч снимали, а фотоэлементы оставались на поверхности как переводная картинка.Таким образом фотоэлементы успешно помещали на самые разнообразные плоские и изогнутые поверхности – стекло, пластик, бумагу – и они работали без всяких потерь эффективности.
Преимущество фотоэлементов-наклеек не только в их гибкости, они также легче и дешевле по сравнению с обычными фотогальваническими панелями таких же размеров. Сочетая тонкопленочные солнечные батареи и тонкопленочную электронику можно создать множество новых продуктов – от “умной” одежды до новых аэрокосмических систем.
Источник: wordscience.org